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INTRODUCTION

The analysis of the properties of approximants induced by properties of
the functions they approximate has aroused much interest in the literature.
In particular, convexity preserving operators and variation diminishing
transformations (see e.g. [3, 10]) fit into this category.

In the same vein, it was observed by Averbach (see [10]) that Bn(f; x) ~
Bn+1(f; x) for all f convex on [0, 1], where Bn(f; x) is the nth Bernstein
polynomial. This observation was extensively generalized by Marshall and
Proschan [9] who used majorization techniques to obtain similar results for
a wide class of positive linear approximation methods generated through
probabilistic considerations. A converse to this type of result was later
obtained in [11], where it was proved that the relations

for all n, x

where {Ln } belong to a wide class of positive linear approximation operators,
characterize convex functions.

In a colloquium talk where I presented these results, Professor R. Askey
raised the following question:

Let L1 nr be the rth forward difference operator with respect to n, and let
Dr denote the rth derivative with respect to x (with r = 0 given the usual inter
pretation). Then the previous results can be stated as

DOf(x) ~ 0

D2f(x) ~ 0

for all x -= L1 noLn(f; x) ~ 0

for all x -= L1 nlLnCf; x) ~ 0

for all n, x,

for all n, x,

(1)

(2)
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for a class of positive linear operators including the Bernstein polynomial
operators. Is it true, then, that

D4j(x) >°
or, in general, that

for all n, x (3)

for all n, x. (4)

The answer to this question is negative even for k = 2, as will be established
in Section 1. The natural question that arises next is whether an intersection
ofcones of functions satisfying differential inequalities will suffice.

Arama and Ripianu [1] proved that if f(x) - f(O) is absolutely monotone
then L1 1l2B..(f; x) > 0, and Horova [2] derived the same conclusion for f
whose first four derivatives are nonnegative.

We will discuss in this note a more symmetric implication, namely, the
implication from an infinite collection of conditions on f(x) to an infinite
collection of conditions on the sequence of approximants. Specifically, we
prove that for a large class of approximants (not including, strangely enough,
the Bernstein polynomial operators), absolute monotonicity of the function
{implies complete monotonicity of the sequence {L..(f; X)}~_l for each fixed x.

1. A NEGATIVE ANSWER

We prove in this section that the answer to Askey's original question is
negative, and in fact relations of type (1), (2), (3) cannot be valid together
for nondegenerate approximation operators.

THEOREM 1. Let {Lll}~=l be a sequence of positive linear operators from
qo, 1] to qo, 1], such that

lim L ll(J; x) == f(x),
n-""

for all f E qo, 1]. When

uniformly (5)

for all n and all f convex (6)

and

then

for all n and all f such that1" is convex, (7)

L ll(J; x) == f(x) for all n and all f E qo, I].
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Proof. Set, for all n,

Since ±t and ±1 are convex functions, (6) implies that

289

Uit; x) - 0

U..(1; x) - 0

for all n,

for all n.

(8)

(9)

Relation (9) implies that Lil; x) is independent of n. Making use of (5) we
conclude that

L ..(1; x) - 1 for all n. (10)

Returning to (8) and using a similar argument, we deduce that

L..(t; x) = x for all n. (11)

Let now V.. = U.. - U..+1 = LJ ..2L... Since ±t2 satisfy the requirement
that the second derivative be convex, relation (7) implies that

(12)

i.e., that U..(t 2 ; x) is independent of n. Thus, L..(t 2 ; x) is a solution of a
difference equation of the form

(13)

where g(x) is some continuous function.
Appealing now to (5), we conclude that g(x) -0 and that

(14)

Relations (10), (11), and (14) imply by Korovkin's classical theorem
(see [8] p. 14) that L ..(f; x) == j(x), for all nand allfE qo, 1].

2. THE ABSOLUTELY MONOTONE CASE

We start this section by recalling some information about absolutely
monotone functions (see, e.g., [7]).

An inequality of the type

(15)
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is linear. By making use of the extreme ray structure of the cone 't'A [0, 1] of
absolutely monotone functions on [0, 1] we conclude that (15) holds for each
fE 't'A if and only if it holds for I(t) = t S, s = 0, 1,... , i.e., if and only if

s = 0,1, ... (16)

A similar result is valid for a subclass of 't'A [0, 00), where the growth off is
suitably restricted. These observations are simple consequences of the
standard limit theorems.

We discuss first the Bernstein polynomial operators. Surprisingly, these
operators which serve as standard examples satisfying most of the elegant
properties of approximants, fail to do so in this case. In fact, we easily obtain

THEOREM 2. For fE qo, 1] let Bn(f; x) = L:~o/(i/n)(~) xi(l - x)n-i be
the nth Bernstein polynomial operator. There exists an absolutely monotone
function f and a point X oE [0, 1] such that {Bn(/, XO)}:=l is not completely
monotone.

Proof Consider the polynomial

Simple computations transform it into

(
3x 1 - 2x )

= x 3 + x(I - x) 11 + n2 •

Consider now the function

J(ex) =~ + 1 - 2x
ex ex2

A direct differentiation yields

j<kl(ex) = 3x(-I)kk! + (1 - 2x)(-I)k(k + I)!
exk+l exk+2

(-I)k k!
= k+2 {(k + 1) + x[30: - 2(k + I)]}.

0:

It is easily seen that for k such that 3ex < 2(k + 1), the. expression in the
brackets attains its minimum at x = 1. This minimum is 3ex - (k + 1) and is
therefore negative if 31X < (k + 1). Hence f(o:) is not completely monotone.
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Taking our lead from this fact, we verify by direct computation that
(1 - X)-l Ll;OBnt 3 ; X)I"'=l < O. By continuity, for Xo near 1, we have
Ll;OB(t3; xo) < 0, so that B n(t3; xo) is not completely monotone. Q.E.D.

We turn next to the positive answers. We start with the Szasz-Mirakyan
operators, Mn(f; x), constructed through the Poisson distribution. These
are defined by

(17)

THEOREM 3. Let f be absolutely monotone on [0, (0) and assume there
exist constants A, B such that

I f(t)[ < AeBt
, t E [0, (0). (18)

Then {Mn(f; x)}r' is a completely monotone sequence for all x.

Proof Condition (18) assures Mn(f; x) -+ f(x), where the convergence is
uniform on compact subsets (see [6, p. 333]), and the sufficiency of checking
for the extreme rays t S

, s = 0, 1,.... The case s = 0 is trivial. We now proceed
to prove that {Mit S

; X)}:~l is completely monotone for s ~ 1.
We need the following simple result:

Let s ~ 1, and let ajs,j = 1,... , s be defined by

S

t S = L ajAf - 1) ... (t - j + 1)
j=l

Then ajs > ofor j = 1,... , s.

(19)

(20)

Indeed, if we define (D = t(t - 1) ... (t - j + l)jj! (where (g) = 1) we have

Hence, for all 1 ~ i ~ s

so that

1 ~ i ~ s.

Since Ll/[tS][t=o has the sign of the ith derivative of tSat some point between
oand i, (20) follows.
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Straightforward computation yields now

00 (k)' (nx)k 00 (k)' (nx)kMn(t·; x) = e-n", L - --,- = e-n", L - --,-
k~O n k . k=l n k .

e-n", 00 s k

= -s L L a;sk(k - 1) ... (k - j + 1) x, nk
n k~l ;~1 k.

Since the a;. are positive and {1/ni}~=l is a completely monotone sequence
for all i, it follows that {Mn(ts; x)} is completely monotone.

Our next example is also quite easy. We define, using the Gauss kernel,

(
n )1/2 fOOWn(f; x) = --:;; _00 f(t) e-n(t-"'l2 dt.

THEOREM 4. Let f be an even function, absolutely monotone on [0, (0),
such that

lim If(t)l/e<>t2 = 0
t->oo

for all ex > O. (21)

Then {Wn(f; x)};x' is a completely monotone sequence for each fixed x.

Proof Taking account of the growth condition (see [II, p. 438] and the
extreme ray structure, it suffices to consider {Wit 2.; X)}~=l' for s = 1,2,....

A straightforward computation yields

)

1/2 s 2 00

= (~ L ( ~) X 2.-2i f t2ie-nt2 dt
\ 7T i=O 21 -00

= ~ (2s) 2s-2i ~2i)!
L... 2' X 22i i" .
i~O 1 n l.

Since {1/ni}~~l is completely monotone for each i, so is this finite
sum. Q.E.D.

As a final example, we discuss approximation operators of the type

x>o (22)
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where cp(t) is the density function of a nonnegative random variable X with
expectation 1, and cp(nl(t) denotes the n-fold convolution of cp. We note that
if Xl ,... , Xn are independent random variables with density cp, then

Un(f; x) = E [t( x 2:;1 X; )],

where E['] is the expectation operator. Let

V(s) = f' eBtcp(t) dt

and assume that

c = sup{s I V(s) < oo} > o.
Let r be the class of continuous functions on [0, (0) obeying

(23)

I f(t)1 < Ke(C-o<lt, o~ t ~ 00,

(24)

for some positive constants K and ex.
It is proved in ([6, p. 330]) that for eachfE r we have U,,(f; x) ->- f(x),

o~ x < 00, where the convergence is uniform on compact subsets.
Assume now that cp is a P6lya Frequency (PF) density vanishing for t < O.

(For information concerning PF functions consult chapter 7 of [4]). The
Laplace transform !fJ(s) of cp(t) has the form

!fJ(s) = raBin (1 + .\;s),
;=1

where S;;:' 0, A; > 0,2:;:1 A; < 00 ([4, p. 345]). Hence V(s) = e88/

n~=l(1 - A;S) and c = inf I/A; . Observe next that if the sequence {A;} is
infinite then A; ->- O. Thus inf I/A; = min I/A; = c > 0, so that (23) is satisfied.

We can now state

THEOREM 5. Let cp(t) be a PF density vanishing for t < 0, whose Laplace
transform is given in (24). Let fE r, where c = min (I/A;) > O. Then
{Un(f; X)};;'=l is completely monotone whenever fis absolutely monotone.

Proof We start with the basic PF density cp(,\, S; t) = e(t) whose Laplace
transform is given by

Explicitly,

S > 0, A> O.

1
OCt) = Xr IHl/\

= 0,

t ;;:, S,

t < S.
(25)
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It is readily computed that

1 (t - no)n-1
O(n)(t) = An exp[-(t - no)jA] (n _ 1)! '

= 0,

Using this explicit expression, we have, for r ~ 1

t ~ no

t > no
(26)

Joo xrrr 1 (t - no)n-1
U (t r • x) = -- - e-(t-n6l/lt dt
n, nB nr An (n - 1)!

_ r r or-k (r) k (k + n - 1)!
- X L -k k A (- 1)' .

k=O n n.
Note that

(k ~ n - 1)! = (1 + k - 1)(1 + k - 2) '" (1 + !)
nk(n-1)! n n n

dk •i > 0.

Hence
r-1 b (0)

U (t r
• x) = x r

" ~n , .L,., nJ '
3=0

This is a finite sum of completely monotone sequences; hence it is com
pletely monotone.

Assume now that Olt) and 02(t) are two basicPF-densities of the form (25),
and let ¢J = 01 * O2 be their convolution. Let {Un};" be the operators cor
responding to ¢J. Let Xi , i = 1,... , n be independent identically distributed
random variables with density 81 , and let Yi , i = 1,... , n correspond to 82 in
the same way. Then Xi + Yi , i = 1,... , n are independent random variables
with density ¢J, and we have

UnCtr; x) = xrE f( L~~1 (X;; + Yi) n
= xrE [( L:"~ Xi + L~-~ Yi n
= x r it G) E [( L~=~ Xi nE [( L~~ Y i f-i]

= X r t ()[.± bi'~S81) ][r, bi.r~~(82)J
J~O ] .=0 .-0
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Since bi,lel ), bi,j(e2) are nonnegative for all i,j so is also bk,r for all k, r. It
follows that {Un(t r; X)}~~I is a completely monotone sequence.

Hence, if ¢ is a finite convolution of the basic PF-densities, then Un(tr ; x)
is a finite positive linear combination of {n-i}~~o .

Note next that (cf. [4, p. 334]) if ¢(t) is the general PF density, then
¢(t) = limk+oo ¢k(t), where the ¢k(t), k = 1,2,... , are finite convolutions of
the basic PF-densities, and the convergence is uniform on compact subsets.

Hence for each fixed n, ¢~n)(t) -+¢(n)(t), and by the dominated conver
gence theorem

r = 0,1, ... ,

where the notation is obvious.
Since each of the expressions on the left is a finite positive linear combina

tion of powers of Ifni, i ~ r, the same result is valid for the limit.
Thus, {Un(!T; X)}~~I is a completely monotone sequence, and this suffices,

by the previously employed arguments, to establish the theorem. Q.E.D.
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